
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 1

DESIGN OF A NEW SEMI CARRY SAVE(SCS)

MONTGOMERY MODULAR MULTIPLIER

M.SUDHEERKUMAR REDDY
1
, M.SHIREESHA

2

1
PG Student, Dept of ECE(VLSI-SD), SRIT, Proddatur, AP, India.

2
Assistant Professor, Dept of ECE, SRIT, Proddatur, AP, India.

Abstract— This paper proposes a simple and

efficient Montgomery multiplication algorithm

such that the low-cost and high-performance

Montgomery modular multiplier can be

implemented accordingly. The proposed

multiplier receives and outputs the data with

binary representation and uses only one-level

carry-save adder (CSA) to avoid the carry

propagation at each addition operation. This

CSA is also used to perform operand

precomputation and format conversion from the

carry- save format to the binary representation,

leading to a low hardware cost and short critical

path delay at the expense of extra clock cycles

for completing one modular multiplication. To

overcome the weakness, a configurable CSA

(CCSA), which could be one full-adder or two

serial half-adders, is proposed to reduce the

extra clock cycles for operand precomputation

and format conversion by half. In addition, a

mechanism that can detect and skip the

unnecessary carry-save addition operations in

the one-level CCSA architecture while

maintaining the short critical path delay is

developed. As a result, the extra clock cycles for

operand precomputation and format conversion

can be hidden and high throughput can be

obtained. Experimental results show that the

proposed Montgomery modular multiplier can

achieve higher performance and significant

area–time product improvement when

compared with previous designs.

Index Terms— Carry-save addition, low-cost

architecture, Montgomery modular multiplier,

public-key cryptosystem.

I. INTRODUCTION

 Modular Multiplication (MM) with large

integers is a time consuming operation in many

public-key cryptosystems [1]. Therefore, many

algorithms have been presented to carry out MM

more quickly and Montgomery’s algorithm is one

of them. Montgomery’s algorithm determines the

quotient only depending on the least significant

digit of operands [2]. It replaces the complicated

division in MM with a series of shifting modular

additions. Montgomery algorithm is classified into

two based on the representation of input and output

operands. They are Full Carry-Save Montgomery

modular Multiplication (FCS-MM) and Semi-

Carry-Save Montgomery modular Multiplication

(SCS-MM). In FCS-MM both the obtained sum

and carry are considered as output. But in SCS-

MM only the obtained sum is considered as output.

The adder levels in SCS-MM is less. Therefore

SCS-MM requires lower area than FCS-MM.

Hence SCS based multiplier is modified here. The

remainder of this paper is organised as follows.

Section II briefly describes about Montgomery

MM algorithm. Section III briefly reviews the

existing SCS based Montgomery multipliers.

Section IV describes the proposed SCS based

Montgomery multiplier. The comparisons of

existing and proposed multipliers are made in

Section V. The conclusion is drawn in Section VI.

II. MODULAR MULTIPLICATION

ALGORITHMS

 The Montgomery modular product S of A

and B can be obtained as S = A × B × R−1 (mod

N), where R−1 is the inverse of R modulo N. That

is, R × R−1 = 1 (mod N). The length of A,B and N

should be same. Also the value of N should be

greater than A and B.

Fig. 1 Montgomery MM Algorithm.

III EXISTING SCS BASED

MULTIPLIERS

A) SCS-Based Montgomery Multiplication
 The Montgomery modular product S of A and

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 2

B is obtained as S = A × B × R−1 (mod N), where

R−1 is the inverse of R modulo N. That is, R × R−1

= 1 (mod N). The intermediate result S of shifting

modular addition is kept in the carry save

representation (SS, SC) to avoid long carry

propagation. The format conversion from the carry-

save format of the final modular product into its

binary format is needed. The two existing SCS

based Montgomery Multiplier are SCSMM1 and

SCS- MM2. Fig 2 shows the architecture of SCS-

based MM algorithm proposed in [3] (denoted as

SCSMM1 multiplier) ,composed of two Carry Save

Adders (CSA) architecture and one format

converter, Carry Propagation Adder (CPA), where

the dashed line denotes a 1-bit signal.

Fig. 2 SCS-MM1 multiplier

Fig. 3 SCS-MM2 multiplier

 The extra CPA enlarges the area and the

critical path of the SCS-MM-1 multiplier SCS MM

1 is modified by reusing the two-level CSA

architecture for performing the format conversion

so that the CPA can be removed. Fig. 3 shows the

architecture of the Montgomery multiplier

proposed in [4] (denoted as SCSMM-2 multiplier).

This multiplier is modified further to reduce the

critical path delay and area to increase the

performance.

B) FCS-Based Montgomery Multiplication:

 To avoid the format conversion, FCS-

based Montgomery multiplication maintains A, B,

and S in the carry save representations (AS, AC),

(BS, BC), and (SS, SC), respectively. McIvor et al.

[9] proposed two FCS based Montgomery

multipliers, denoted as FCS-MM-1 and FCS-MM-2

multipliers, composed of one five-to two (three-

level) and one four-to-two (two-level) CSA

architecture, respectively. The algorithm and

architecture of the FCS-MM-1 multiplier are

shown in Figs. 5 and 6, respectively. The barrel

register full adder (BRFA) consists of two shift

registers for storing AS and AC, a full adder (FA),

and a flip-flop (FF). For more details about BRFA,

please refer to [9] and [10]. On the other hand, the

FCS-MM-2 multiplier proposed in [9] adds up BS,

BC, and N into DS and DC at the beginning of

each MM. Therefore, the depth of the CSA tree can

be reduced from three to two levels. Nevertheless,

the FCS-MM-2 multiplier needs two extra 4-to-1

multiplexers addressed by Ai and qi and two more

registers to store DS and DC to reduce one level of

CSA tree. Therefore, the critical path of the FCS-

MM-2 multiplier may be slightly reduced with a

significant increase in hardware area when

compared with the FCS-MM-1 multiplier.

Fig 4.FCS-MM-1 multiplier

IV. Proposed Algorithm and Hardware

Architecture

 The critical path delay of SCS-based

multiplier is reduced by pre-computing D = B + N .

Two CSA’s are replaced by one CSA [6]. The CSA

is reused for performing B+ N and the format

conversion. Fig.3 shows the hardware architecture

of modified SCS-based Montgomery multiplier

(MSCS-MM) . The Zero_D circuit in Fig. 3 is used

to detect whether SC is equal to zero, which can be

accomplished using one NOR operation.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 3

Fig.5 MSCS-MM multiplier

 The carry propagation addition operations

of B + N and the format conversion are performed

by the one-level CSA architecture of the MSCS-

MM multiplier through repeatedly executing the

carry-save addition. Therefore, the critical path

delay of the MSCS-MM multiplier can be reduced.

The area complexity is also reduced as only one

level CSA is used here. The structure of carry save

adder used is shown in Fig 5. The CSA block

internally consists of full adders which is realized

using and gates and xor gates.

Fig. 6 Two cells of CSA

 The carry save adder is used because it

have less propagation delay. Carry Save adder for

n-bit means it have n-parallel adders, which

produce n-bit sums and n-bit carry’s. The inputs for

carry save adder are SS,SC and mux output. The

hardware architecture of SCS-MM-New algorithm,

denoted as SCS-MM-New multiplier, are shown in

Fig. 6, which consists of one one-level

CCSA architecture,two4-to-multiplexers (i.e., M1

and M2), one simplified

Fig. 7. SCS-MM-New algorithm

.

Fig.8. SCS-MM-New multiplier

 multiplier SM3, one skip detector Skip_D, one

zero detector Zero_D, and six registers. Skip_D is

developed to generate skipi 1, q, and Â in the i

th iteration. Both M4 and M5 in Fig. 11 are 3-bit

2-to-1 multiplexers and they are much smaller than

k-bit multiplexers M1, M2, and SM3. In addition,

the area of Skip_D is negligible when compared

with that of the k-bit one-level CCSA architecture.

Similar to Fig.5, the select signals of multiplexers

M1 and M2 in Fig.6 are generated by the control

part, which are not depicted for the sake of

simplicity.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 4

Fig.9. Skip detector Skip_D

V. EXPERIMENTAL RESULTS

 The design of Modified SCS-MM

(MSCS-MM) has been made by using Verilog

VHDL. The simulation results have been evaluated

by using Xilinx 14.7, for 4-bit and 8-bit. The

simulation results are shown in Figures below. The

critical path delay, area and power of the proposed

multiplier is analyzed. This is then compared with

the area, delay and power of SCS MM-2. The

delay, area and power of the proposed multiplier

have been decreased. Therefore the speed the

proposed multiplier is increased. The below figure

show the RTL schematic of proposed Montgomery

modular multiplication when the RTL code is

executed using Xilinx.

Fig.10 RTL schematic of SCS-MM-NEW

multiplier

From the above module we can say that the scs-mm

multiplier ha 3 inputs(a,b,n) and output(s[1:0]).

Fig.11 Technology schematic of scs-mm-new-

multiplier

The figure 11 represents the internal technology

schematic of proposed scs-mm-new multiplier

when run using Xilinx. Which consist of lut2,two

input buffers and two output buffers.

Fig.12 simulation result of Montgomery

modular multiplication

 The above figure show the simulation result of

ssc-mm-new-multiplier when input stimulus

a[3:0],b[3:0],n[3:0] is supplied to module using

Verilog test feature the output ss[3:0] can be

absorbed from above figure when input is applied.

The below figures show the simulation results of

existing multiplier

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 5

Fig.13 simulation result of FCS-MM-1

The above figure shows the simulation of fcs-mm-1

when it is executed in Xilinx.from the above figure

we can say that it has input a,b,n which is of size 3

bit I,e [2:0] and output ss[2:0] .we can apply any

number of inputs from test bench and absorb the

result by simulating the design.

Fig.14 simulation result of MOD SCS

Figure 14 shows the simulation result of mod scs

when executed the design using Xilinx software.

We can use this simulation result to compare the

proposed method with existing methods.

Fig.15 simulation output of SCS-MM-2

Fig 15 shows the simulation result of SCS-MM-2

multiplier which is advanced of SCS-MM-1 which

is obtained by making changes in existing

multiplier that is scs-mm-1.The purpose of above

simulation results is to compare the existing

methods with proposed method which is very much

important.

Fig.16 design summary of Montgomery modular

multiplication

The above figure shows the design summary of

proposed method which specify the number of

slices ,4 input LUT’S, bonded IOBs used .and how

many are available after the utilization. the

proposed method used 1 slices available 4656, and

1 LUT(look up table) ,available 9312,and 4 IOBs

and available 232.

VI. CONCLUSION
 FCS-based multipliers maintain the input and

output operands of the Montgomery MM in the

carry-save format to escape from the format

conversion, leading to fewer clock cycles but larger

area than SCS-based multiplier. To enhance the

performance of Montgomery MM while

maintaining the low hardware complexity, this

paper has modified the SCS-based Montgomery

multiplication algorithm and proposed a low-cost

and high-performance Montgomery modular

multiplier. The proposed multiplier used one-level

CCSA architecture and skipped the unnecessary

carry-save addition operations to largely reduce the

critical path delay and required clock cycles for

completing one MM operation. Experimental

results showed that the proposed approaches are

indeed capable of enhancing the performance of

radix-2 CSA-based Montgomery multiplier while

maintaining low hardware complexity.

REFERRENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A

method for obtaining digital signatures and public-

key cryptosystems,” Commun. ACM, vol. 21, no.

2, pp. 120–126, Feb. 1978.

[2] V. S. Miller, “Use of elliptic curves in

cryptography,” in Advances in Cryptology. Berlin,

Germany: Springer-Verlag, 1986, pp. 417–426.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – VI – ISSUE – 24, OCT-DEC, 2018 ISSN: 2320-1363

 6

[3] N. Koblitz, “Elliptic curve cryptosystems,”

Math. Comput., vol. 48, no. 177, pp. 203–209,

1987.

[4] P. L. Montgomery, “Modular multiplication

without trial division,” Math. Comput., vol. 44, no.

170, pp. 519–521, Apr. 1985.

[5] Y. S. Kim, W. S. Kang, and J. R. Choi,

“Asynchronous implementation of 1024-bit

modular processor for RSA cryptosystem,” in Proc.

2nd IEEE Asia-Pacific Conf. ASIC, Aug. 2000, pp.

187–190.

[6] V. Bunimov, M. Schimmler, and B. Tolg, “A

complexity-effective version of Montgomery’s

algorihm,” in Proc. Workshop Complex. Effective

Designs, May 2002.

[7] H. Zhengbing, R. M. Al Shboul, and V. P.

Shirochin, “An efficient architecture of 1024-bits

cryptoprocessor for RSA cryptosystem based on

modified Montgomery’s algorithm,” in Proc. 4th

IEEE Int. Workshop Intell. Data Acquisition Adv.

Comput. Syst., Sep. 2007, pp. 643–646.

[8] Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang,

“An efficient CSA architecture for Montgomery

modular multiplication,” Microprocessors

Microsyst., vol. 31, no. 7, pp. 456–459, Nov. 2007.

[9] C. McIvor, M. McLoone, and J. V. McCanny,

“Modified Montgomery modular multiplication

and RSA exponentiation techniques,” IEE Proc.-

Comput. Digit. Techn., vol. 151, no. 6, pp. 402–

408, Nov. 2004.

[10] S.-R. Kuang, J.-P. Wang, K.-C. Chang, and

H.-W. Hsu, “Energy-efficient high-throughput

Montgomery modular multipliers for RSA

cryptosystems,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 21, no. 11, pp. 1999–

2009, Nov. 2013.

[11] J. C. Neto, A. F. Tenca, and W. V. Ruggiero,

“A parallel k-partition method to perform

Montgomery multiplication,” in Proc. IEEE Int.

Conf. Appl.-Specific Syst., Archit., Processors,

Sep. 2011, pp. 251–254.

[12] J. Han, S. Wang, W. Huang, Z. Yu, and X.

Zeng, “Parallelization of radix-2 Montgomery

multiplication on multicore platform,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 21, no.

12, pp. 2325–2330, Dec. 2013.

[13] P. Amberg, N. Pinckney, and D. M. Harris,

“Parallel high-radix Montgomery multipliers,” in

Proc. 42nd Asilomar Conf. Signals, Syst., Comput.,

Oct. 2008, pp. 772–776.

[14] G. Sassaw, C. J. Jimenez, and M. Valencia,

“High radix implementation of Montgomery

multipliers with CSA,” in Proc. Int. Conf.

Microelectron., Dec. 2010, pp. 315–318.

[15] A. Miyamoto, N. Homma, T. Aoki, and A.

Satoh, “Systematic design of RSA processors based

on high-radix Montgomery multipliers,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol.

19, no. 7, pp. 1136–1146, Jul. 2011.

[16] S.-H. Wang, W.-C. Lin, J.-H. Ye, and M.-D.

Shieh, “Fast scalable radix-4 Montgomery modular

multiplier,” in Proc. IEEE Int. Symp. Circuits Syst.,

May 2012, pp. 3049–3052.

[17] J.-H. Hong and C.-W. Wu, “Cellular-array

modular multiplier for fast RSA public-key

cryptosystem based on modified Booth’s

algorithm,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 11, no. 3, pp. 474–484, Jun.

2003.

[18] F. Gang, “Design of modular multiplier based

on improved Montgomery algorithm and systolic

array,” in Proc. 1st Int. Multi-Symp. Comput.

Comput. Sci., vol. 2. Jun. 2006, pp. 356–359.

[19] G. Perin, D. G. Mesquita, F. L. Herrmann, and

J. B. Martins, “Montgomery modular

multiplication on reconfigurable hardware: Fully

systolic array vs parallel implementation,” in Proc.

6th Southern Program. Logic Conf., Mar. 2010, pp.

61–66.

[20] A. Cilardo, A. Mazzeo, L. Romano, and G. P.

Saggese, “Exploring the design-space for FPGA-

based implementation of RSA,” Microprocessors

Microsyst., vol. 28, no. 4, pp. 183–191, May 2004.

[21] D. Bayhan, S. B. Ors, and G. Saldamli,

“Analyzing and comparing the Montgomery

multiplication algorithms for their power

consumption,” in Proc. Int. Conf. Comput. Eng.

Syst., Nov. 2010, pp. 257–261.

[22] C. D. Walter, “Montgomery exponentiation

needs no final subtractions,” Electron. Lett., vol.

35, no. 21, pp. 1831–1832, Oct. 1999.

