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Abstract— This paper proposes a simple and 

efficient Montgomery multiplication algorithm 

such that the  low-cost  and high-performance 

Montgomery modular multiplier can be 

implemented accordingly. The proposed 

multiplier receives and outputs the data with 

binary representation and uses only one-level 

carry-save adder (CSA) to avoid the carry 

propagation at each addition operation. This 

CSA is also used to perform operand 

precomputation and format conversion from the 

carry- save format to the binary representation, 

leading to a low hardware cost and short critical 

path delay at the expense of extra clock cycles 

for completing  one  modular  multiplication. To 

overcome the weakness, a configurable CSA 

(CCSA), which could be one full-adder or two 

serial half-adders, is proposed to reduce the 

extra clock cycles for operand precomputation 

and format conversion by half. In addition, a 

mechanism that can detect and skip the 

unnecessary carry-save addition operations  in 

the one-level CCSA architecture while 

maintaining the short critical path delay is 

developed. As a result, the extra clock cycles for 

operand precomputation and format conversion 

can be hidden and high throughput can be 

obtained. Experimental  results show that the 

proposed Montgomery modular multiplier can 

achieve higher performance and significant 

area–time product improvement when 

compared with previous designs. 

 

Index Terms— Carry-save addition, low-cost 

architecture, Montgomery modular multiplier, 

public-key cryptosystem. 

 

I. INTRODUCTION 
 

 Modular Multiplication (MM) with large 

integers is a time consuming operation in many 

public-key cryptosystems [1]. Therefore, many 

algorithms have been presented to carry out MM 

more quickly and Montgomery’s algorithm is one 

of them. Montgomery’s algorithm determines the 

quotient only depending on the least significant 

digit of operands [2]. It replaces the complicated 

division in MM with a series of shifting modular 

additions. Montgomery algorithm is classified into 

two based on the representation of input and output 

operands. They are Full Carry-Save Montgomery 

modular Multiplication (FCS-MM) and Semi-

Carry-Save Montgomery modular Multiplication 

(SCS-MM). In FCS-MM both the obtained sum 

and carry are considered as output. But in SCS-

MM only the obtained sum is considered as output. 

The adder levels in SCS-MM is less. Therefore 

SCS-MM requires lower area than FCS-MM. 

Hence SCS based multiplier is modified here. The 

remainder of this paper is organised as follows. 

Section II briefly describes about Montgomery 

MM algorithm. Section III briefly reviews the 

existing SCS based Montgomery multipliers. 

Section IV describes the proposed SCS based 

Montgomery multiplier. The comparisons of 

existing and proposed multipliers are made in 

Section V. The conclusion is drawn in Section VI. 

 

II. MODULAR MULTIPLICATION 

ALGORITHMS 
 

 The Montgomery modular product S of A 

and B can be obtained as S = A × B × R−1 (mod 

N), where R−1 is the inverse of R modulo N. That 

is, R × R−1 = 1 (mod N). The length of A,B and N 

should be same. Also the value of N should be 

greater than A and B. 

 
Fig. 1 Montgomery MM Algorithm. 

 

III EXISTING SCS BASED 

MULTIPLIERS 
   

A) SCS-Based Montgomery Multiplication 
  The Montgomery modular product S of A and 
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B is obtained as S = A × B × R−1 (mod N), where 

R−1 is the inverse of R modulo N. That is, R × R−1 

= 1 (mod N). The intermediate result S of shifting 

modular addition is kept in the carry save 

representation (SS, SC) to avoid long carry 

propagation. The format conversion from the carry-

save format of the final modular product into its 

binary format is needed. The two existing SCS 

based Montgomery Multiplier are SCSMM1 and 

SCS- MM2. Fig 2 shows the architecture of SCS-

based MM algorithm proposed in [3] (denoted as 

SCSMM1 multiplier) ,composed of two Carry Save 

Adders (CSA) architecture and one format 

converter, Carry Propagation Adder (CPA), where 

the dashed line denotes a 1-bit signal. 

 
Fig. 2 SCS-MM1 multiplier 

 

 
Fig. 3 SCS-MM2 multiplier 

 

 The extra CPA enlarges the area and the 

critical path of the SCS-MM-1 multiplier SCS MM 

1 is modified by reusing the two-level CSA 

architecture for performing the format conversion 

so that the CPA can be removed. Fig. 3 shows the 

architecture of the Montgomery multiplier 

proposed in [4] (denoted as SCSMM-2 multiplier). 

This multiplier is modified further to reduce the 

critical path delay and area to increase the 

performance. 

 

B) FCS-Based Montgomery Multiplication: 

 To avoid the format conversion, FCS-

based Montgomery multiplication maintains A, B, 

and S in the carry save representations (AS, AC), 

(BS, BC), and (SS, SC), respectively. McIvor et al. 

[9] proposed two FCS based Montgomery 

multipliers, denoted as FCS-MM-1 and FCS-MM-2 

multipliers, composed of one five-to two (three-

level) and one four-to-two (two-level) CSA 

architecture, respectively. The algorithm and 

architecture of the FCS-MM-1 multiplier are 

shown in Figs. 5 and 6, respectively. The barrel 

register full adder (BRFA) consists of two shift 

registers for storing AS and AC, a full adder (FA), 

and a flip-flop (FF). For more details about BRFA, 

please refer to [9] and [10]. On the other hand, the 

FCS-MM-2 multiplier proposed in [9] adds up BS, 

BC, and N into DS and DC at the beginning of 

each MM. Therefore, the depth of the CSA tree can 

be reduced from three to two levels. Nevertheless, 

the FCS-MM-2 multiplier needs two extra 4-to-1 

multiplexers addressed by Ai and qi and two more 

registers to store DS and DC to reduce one level of 

CSA tree. Therefore, the critical path of the FCS-

MM-2 multiplier may be slightly reduced with a 

significant increase in hardware area when 

compared with the FCS-MM-1 multiplier. 

 
Fig 4.FCS-MM-1 multiplier 

 

IV. Proposed Algorithm and Hardware 

Architecture 
 

 The critical path delay of SCS-based 

multiplier is reduced by pre-computing D = B + N . 

Two CSA’s are replaced by one CSA [6]. The CSA 

is reused for performing B+ N and the format 

conversion. Fig.3 shows the hardware architecture 

of modified SCS-based Montgomery multiplier 

(MSCS-MM) . The Zero_D circuit in Fig. 3 is used 

to detect whether SC is equal to zero, which can be 

accomplished using one NOR operation. 
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Fig.5 MSCS-MM multiplier 

 

 The carry propagation addition operations 

of B + N and the format conversion are performed 

by the one-level CSA architecture of the MSCS-

MM multiplier through repeatedly executing the 

carry-save addition. Therefore, the critical path 

delay of the MSCS-MM multiplier can be reduced. 

The area complexity is also reduced as only one 

level CSA is used here. The structure of carry save 

adder used is shown in Fig 5. The CSA block 

internally consists of full adders which is realized 

using and gates and xor gates. 

 
Fig. 6 Two cells of CSA 

 

 The carry save adder is used because it 

have less propagation delay. Carry Save adder for 

n-bit means it have n-parallel adders, which 

produce n-bit sums and n-bit carry’s. The inputs for 

carry save adder are SS,SC and mux output. The 

hardware architecture of SCS-MM-New algorithm, 

denoted as SCS-MM-New multiplier, are shown in 

Fig. 6, which   consists of    one   one-level   

CCSA architecture,two4-to-multiplexers (i.e., M1 

and M2), one simplified 

 

 
Fig. 7. SCS-MM-New algorithm 

. 

Fig.8. SCS-MM-New multiplier 

      multiplier SM3,  one  skip  detector Skip_D, one    

zero detector Zero_D, and six registers. Skip_D is     

developed to generate skipi   1,  q, and   Â     in  the  i 

th  iteration.  Both  M4  and M5 in Fig. 11 are 3-bit 

2-to-1 multiplexers and they are much smaller than 

k-bit multiplexers M1, M2, and SM3. In addition, 

the area of Skip_D  is  negligible when  compared  

with  that of the k-bit one-level CCSA architecture. 

Similar to Fig.5, the select signals of multiplexers 

M1 and M2 in Fig.6 are generated by the control 

part, which are not depicted for the sake of 

simplicity. 
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Fig.9. Skip detector Skip_D 

 

V. EXPERIMENTAL RESULTS 

 

 The design of Modified SCS-MM 

(MSCS-MM) has been made by using Verilog 

VHDL. The simulation results have been evaluated 

by using Xilinx 14.7, for 4-bit and 8-bit. The 

simulation results are shown in Figures below. The 

critical path delay, area and power of the proposed 

multiplier is analyzed. This is then compared with 

the area, delay and power of SCS MM-2. The 

delay, area and power of the proposed multiplier 

have been decreased. Therefore the speed the 

proposed multiplier is increased. The below figure 

show the RTL schematic of proposed Montgomery 

modular  multiplication when the RTL code is 

executed using Xilinx. 

 
Fig.10 RTL schematic of SCS-MM-NEW 

multiplier 

From the above module we can say that the scs-mm 

multiplier ha 3 inputs(a,b,n) and output(s[1:0]). 

 

 
Fig.11 Technology schematic of scs-mm-new-

multiplier 

   

The figure 11 represents the internal technology 

schematic of proposed scs-mm-new multiplier 

when run using Xilinx. Which consist of lut2,two 

input buffers and two output buffers. 

  

 
Fig.12 simulation result of Montgomery 

modular multiplication 

      The above figure show the simulation result of 

ssc-mm-new-multiplier when input stimulus 

a[3:0],b[3:0],n[3:0] is supplied to module using 

Verilog test feature the output ss[3:0] can be 

absorbed from above figure when input is applied. 

 

The below figures show the simulation results of 

existing multiplier 
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Fig.13 simulation result of FCS-MM-1 

 

The above figure shows the simulation of fcs-mm-1 

when it is executed in Xilinx.from the above figure 

we can say that it has input a,b,n which is of size 3 

bit I,e [2:0] and output ss[2:0] .we can apply any 

number of inputs from test bench and absorb the 

result by simulating the design. 

 

 
Fig.14 simulation result of MOD SCS 

 

Figure 14 shows the simulation result of mod scs 

when executed the design using Xilinx software. 

We can use this simulation result to compare the 

proposed method with existing methods. 

 

 
Fig.15 simulation output of SCS-MM-2 

 

Fig 15 shows the simulation result of SCS-MM-2 

multiplier which is advanced of SCS-MM-1 which 

is obtained by making changes in existing 

multiplier that is scs-mm-1.The purpose of above 

simulation results is to compare the existing 

methods with proposed method which is very much 

important. 

 

 
Fig.16 design summary of Montgomery modular 

multiplication 

 

The above figure shows the design summary of 

proposed method which specify the number of 

slices ,4 input LUT’S, bonded IOBs used .and how 

many are available after the utilization. the 

proposed method used 1 slices available 4656, and 

1 LUT(look up table) ,available  9312,and 4 IOBs 

and available 232. 

 

VI. CONCLUSION 
       FCS-based multipliers maintain the input and 

output operands of the Montgomery MM in the 

carry-save format to escape from the format 

conversion, leading to fewer clock cycles but larger 

area than SCS-based multiplier. To enhance the 

performance of Montgomery MM while 

maintaining the low hardware complexity, this 

paper has modified the SCS-based Montgomery 

multiplication algorithm and proposed a low-cost 

and high-performance Montgomery modular 

multiplier. The proposed multiplier used one-level 

CCSA architecture and skipped the unnecessary 

carry-save addition operations to largely reduce the 

critical path delay and required clock cycles for 

completing one MM operation. Experimental 

results showed that the proposed approaches are 

indeed capable of enhancing the performance of 

radix-2 CSA-based Montgomery multiplier while 

maintaining low hardware complexity. 
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